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1. Introduction

During the course of this contract, we studied experimentally and theoretically the funda-

mental limit in the modulation bandwidth of quantum well lasers. The motivation of this study

arises from the fact that. despite numerous predictions in the last few years on the potential su-

periority of quantum well lasers in high speed modulation, none of them have been successfully

verified experimentally. The initial approach was to study gain compression as a fundamen-

tal mechanism of limiting modulation bandwidths of quantum well lasers. To the extent that

the physics behind gain compression was not known, a major effort was put in uncovering the

fundamental physics responsible for gain compression. It was subsequently discovered that the

finite carrier capture time into the quantum well, despite being a very fast process (ips or less),

can lead to a large gain compression parameter. We have then proceeded along this line and

studied the fundamental quantum capture of electrons and holes into quantum wells, as well as

the consequence of these capture processes in the modulation dynamics of quantum well lasers.

The goal here is not only to understand what limits the modulation bandwidth of quantum well

lasers, but to make use of that knowledge to design suitable structures for overcoming these lim-

itations. The following sections contain detailed descriptions of the experimental and theoretical

work that uncovered the above facts.
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2. Transport in quantum well lasers - a fundamental limitation in high speed

modulation

Quantum well lasers, in particular strained quantum well lasers, are expected to possess

very large modulation bandwidths, owing to a large differential gain. On the other hand, if these

large differential gains are inevitably accompanied by a large gain compression, then the pre-

dicted advantages could largely be negated [Sharfin 19911. Whether this is true or not depends

on the physical origin of gain compression. As mentioned before, a number of such mechanisms

have been proposed for the origin of gain compression, including spectral hole-burning and car-

rier heating. Both of these effects are intrinsically present in any semiconductor lasers and

will definitely contribute Lo gain compression, but the question is whether they yield numerical

values and trends consistent with experimental observations. To the date of this writing, it

appears that these mechanisms ge :ally give gain compression values too small compared to

experiments, and the dependence on various laser parameters, such as device length and thresh-

old density, are not consistent with observations either. These imply that some other physical

mechanisms are present in quantum well lasers that dominate over the above mechanisms. A

new model ( the "reservoir" model) recently proposed by Rideout et al. [Rideout 19911 consid-

ered the consequence of a small but finite capture and escape time of the carriers between the

separate confinement (SCH) region and the quantum well(s). These time constants are in the

picosecond time scale and have in the past been considered too small to be of any consequence in

the direct modulation response of injection laser up to 100GHz. What Rideout et al. proposed,

however, was that these small time constants contribute, in principle, significantly to the gain

compression parameter. Furthermore, the model predicts a linear scaling relationship between

the gain compression coefficient (E) and differential gain (dg/dn), with the proportionality con-

stant depending on these small transport times. If this model were correct there will exist an

ultimate limit in the modulation bandwidth of quantum well lasers despite a high differential

gain in these lasers.

While the carrier capture and escape time constants used in the original "reservoir" model



was described only phenomenologically, Nagarajan et al. [Nagarajan 1991] attributed carrier

diffusion across the SCH region as being a major contributor to the capture time, and classical

thermionic emission as the major physical mechanism for carrier escape from the quantum

well, as supported by experimental results from quantum well lasers with various SCH widths

[Nagarajan 1991]. Futhermore, when one considers the rate equations involved in the transport

in more detail, it was found that the effect of transport is more than just an increase gain

compression - it has other consequences in terms of modifying the relaxation oscillation frequency

and the shape of the response function[Nagarajan 1991][Wu 1992]. We shall consider some of

issues in this section.

The "reservoir" model is illustrated schematically in Fig. 1. The confined electrons (in the

quantum well) and the unconfined electrons in the SCH region are represented by distinct reser-

voirs. The exchange of carriers between these two reservoirs are described by time constants,

rcap and Teac, for the capture and escape processes, respectively. The capture and escape pro-

cesses are intrinsically described by phonon-assisted quantum transitions, but for lasers with a

very wide SCH region, the capture time has been attributed primarily as due to classical carrier

diffusion in the SCH region(Nagarajan 19911. Rate equations can then be written that describe

exchange of carriers between the reservoirs of unconfined and confined carriers, and between the

latter and the lasing photons. The small signal rate equations are [Rideout 1991):

ds = rG'Sona (1)

dn2  )n_ (- - G'Son s (2)
dt Tca ese F7p 7 2

dn3  n3  n2  n3_1" _ e(3)
1- cap Te" 3

where s, n2 , and n3 are the (small signal) photon density, carrier density in the confined quantized

states, and carrier density in the unconfined states in the SCH regions (reservoir), respectively,

F is the confinement factor, G' = vdg/dna E vg', S, is the photon density at the bias point, 72

and r3 are the recombination times, r, is the photon lifetime, and jpump is the pumping currei,t
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density. As in [Rideout 1991], no gain compression coefficient is explicitly incorporated into the

above equations. The effective gain compression coefficient Ecap deduced from these equations

is purely due to the carrier capture effect. The total c is then the sum of the effective Ec,,p and

Eother, where Eother is due to other mechanisms such as spectral hole burning [Takahashi 1991],

carrier heating [Kesler 1987] and standing wave effect [Su 19881.

The response function s/jpump in this model was considered by Rideout et al. (Rideout

1991]. In the following, this response function will be studied using series expansion. The

recombination terms in equations (2) and (3) are neglected for simplicity as the recombination

times (r2 and -r3) are typically a few nanoseconds, and therefore larger than the time scale of

interest. From equation (3), we obtained an expression for net capture current as:

n3 n2 n2 ( -WrcaP ) + jpmp(4)

Tcap rese -reac 1 + iwrc,) 1 + iwrcap

Following a standard analysis on the rate equations (1) and (2), we obtain the modulation

response:

s FG'So FG'So(

jpump -W 2 (1 + R + iwrcap) + (1 + iWrcap)(iwG'So + w2) - F(w)

where Wr = V/W -7o* (the conventional relaxation oscillation frequency) and R = rcap/resc. In

the limit of extremely small capture time (wrcap -* 0), F(w) -* F (w):

F(°)(w) = -w 2 (1 + R) + iwG'So + wr (6)

This expression differs from the conventional modulation response [Rideout 1991] in that the

inertia of the relaxation oscillation is increased by the factor 1+R, resulting in a lowering of the

relaxation oscillation frequency and the damping rate by the same factor [Nagarajan 1991][Wu

19921. Note that the modification of the resonant oscillation inertia depends only on the ratio

R = rcap/resc and not on the absolute values of rcp or Tec.

In the limit of small but finite Tap (wrcap < 1), the denominator of the modulation response

can be factorized as:

F(w) .z F ( - )3 + R) + L2G'S, [ 1 + I + RQ }
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where 9-2 = w' [1 - rapR/(1 + R)2 G'So] and 1/w 3 , -ircap/(1 + R). A corresponding F(w)

can be obtained using a differential gain constant G'(1 - ES) in the conventional rate equations

[Tucker 19851:

F(w;) = -w2 + iwG'So[1 + ~ +~ O(8)

By comparing equation (7) and (8) and neglecting the pole at w = w3 in equation (7), it is

observed that the carrier capture effect is equivalent to a gain compression effect. However, one

has to be very careful in making the comparison because the factor 1+R in W 2 term in equation

(7) reduces the damping rate (the coefficient of iw term) as well as the resonance frequency. The

effective Ecap due to the carrier capture time effect can then be expressed as:

= cap= o -7 v(g')eff (9)
Ecap =TCap G1+=

where (g')e.f = (g')/(l + R) is the effective differential gain. Note that our expression for

Ecap differs from the result in [Rideout 19911 by an additional factor of 1+R. The quantity

(g')eff can be deduced experimentally from the observed resonant frequency we- as: (9')ef=

(r / So)(-rPV).

The linear dependence between c and g' has been experimentally observed recently[Wu

19921. The laser used was a tensile strained 1.55gum quantum well laser with the following

structure: a 200 A thick Ino.41Gao.59As single quantum well is sandwiched by SCH layers as

shown in the inset of Fig.2. Lateral confinement is provided by a 1.5 pm wide waveguide buried

with semi-insulating InP. The lasers are then cleaved into different cavity lengths with a one-sided

HR coating applied on some of the devices. The setup for measuring the modulation response of

the lasers is an optical modulation method similar to that reported previously [Lange 1989]. The

laser used for modulation injection is a 1.3 pm diode laser with the 3dB bandwidth of 10 GHz,

at approximately 10 mW output power. The measurement results are summarized in Table I.

For both sets of HR coated and uncoated samples, the internal quantum efficiency and internal

loss are determined to be around 47% and 2.62 cm- 1 , respectively. The differential gain and the

gain compression coefficient (c) are determined from the measured slopes of relaxation oscillation
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frequency squared versus power and the measured K factor [Bowers 1987]. The resulting values

axe also listed in Table I.

One notices from Table I that samples (1) to (3) lase in the first quantized state while

samples (4) to (7) lase in the second quantized state; as is evident from the lasing wavelengths,

which are sepaated by 56 meV (corresponding to a 200 A well) between the two sets of samples.

Fig.2 plots g' versus threshold gain. The solid circles indicate lasing in the first quantized state,

while the crosses denote lasing in the second quantized state. The transition takes place at a

threshold gain of around 20 cm- 1 . Note the abrupt increase in g' at the transition to second

quantized state lasing and the subsequent decrease in g' at very high gain. This variation of

g' with threshold gain is consistent with a standard model of quantum well gain [Mittelstein

1986]. The linear dependence of the gain compression coefficient E on dg/dn can be visualized by

plotting the ratio E/(v9dg/dn), which is the K-factor less the part involving photon lifetime (i.e.,

K' = K - 47r2rp), versus threshold gain as shown in Fig.3. The factor v is the group velocity

of light. These experimental results show that K' is basically constant to within ±15%, despite

the variation in g' by a factor of two among the samples.

As discussed above, the total E = Ec,,p + Eother is the sum of contributions from carrier

capture effect Ecap and other mechanisms Eother. According to equation (22), the proportionality

constant between Ecap and (g')eff, defined as B, is vgrc0pR/(1 + R). In Fig.4, c is plotted against

(g')eff using the experimental results in Table I. The data are linearly fitted using a least square

regression method. The y-intercept (Eother) is 0.63 x 10- 17 cm3 and the slope of the line (B) is

0.087 cm. These data implies that rap = 3ps, assuming v9 = 101 0cms - 1 and R=2 [Rideout

1991]. This value of reap is comparable to values measured independently in other experiments

[Morin 19911. The value of Eother derived from our data is also comparable to the value derived

from other mechanisms ([Takahashi 1991], [Kesler 19871, [Su 1988]). Dependency of E on g' can

also be obtained in the spectral hole burning theory for quantum well lasers. A recent calculation

[Zhao 19921 illustrated this fact. However, the predicted value of the proportionality constant

between c and g' in [Zhao 1992] based on spectral hole burning is one order of magnitude smaller
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than that observed experimentally. This implies that while spectral hole-burning produces gain-

compression characteristics similar to that of the transport mechanism, the former may not be

a dominant effect. As of this writing, intense effort is still underway to confirm or clarify these

issues.
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3. Quantum Capture and Escape in Quantum Well Lasers

As illustrated in the last section, carrier capture and escape processes play important roles

in limiting the modulation bandwidth of quantum well lasers. Rideout et al. expressed the

effect using an equivalent gain compression coefficient in the limit of short capture time. Na-

garajan et al. considered theoretically the carrier diffusion in the separate confinement region

and neglected the quantum capture effect. They showed experimentally that the relatively long

capture time which causes the reduction of modulation bandwidth is predominantly due to car-

rier diffusion. However, regardless of the physical origins of the capture time, both formulations

[Rideout 1991, Nagarajan 1991] are mathmatically equivalent with the result that the capture

time constant (reap) and the ratio of the capture to escape time constant (R -- rcap/"ec) are

two important parameters which directly affect the modulation response. In particular, a large

ratio R increases both the damping and inertia [Rideout 1991, Nagarajan 1991, Wu 1992] of

the relaxation oscillation and is thus detrimental to high speed modulation. While the diffusion

process is well-understood, the intrinsic quantum capture and escape rates have been dealt with

only through phenomenological equivalent time constants. In order to have a clearer under-

standing of the relative importance of diffusion and the intrinsic quantum capture processes, it

is necessary to consider the physical nature of the latter. It is well accepted that the dominant

processes of transfering carriers into and out of III-V quantum well (QW) are via longitudinal

optical (LO) phonon emission and absorption [Lester 1991, Blom 1990]. Based on these phonon-

assisted processes. considerable effort has been undertaken (both theoretical and experimental)

in establishing the rate of capture into the quantum well, while little attention was paid to the

relative magnitude of capture and escape rates [Brum 1986]. Here, simple analytic expressions

for the net carrier capture current are derived[Kan 1992a], which is then used to compute the

capture and escape time constants (r,p and r7,c) in an unified way and therefore, are able to

calculate the ratio R under different operating conditions and for different QW structures.[Kan

1992a]
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In quantum well structures, electronic states are classified into confined states Ic >= IEc, k/ >1

and unconfined states Iu >= Iku > where E is the longitudinal energy of the quantized state in

quantum well, ku = (ku, ku/) is the wavevector of unconfined state, kc and ku/are the wavevec-

tors parallel to the QW layers, and ku is the wavevector perpendicular to the layers. Assuming

transitions between Ic > and Iu > are LO phonon-assisted, an electron in ju > is captured into

I > by either emitting or absorbing a LO phonon as shown in Fig.5. An unconfined electron of

energy Eu is scattered into the confined states of constant energy EC = Eu ± Eph on Ring-C.

We assume a constant Eph (- 36 meV).

Let wi(ku) be the total departure rate for the electron from an unconfined state Iku > to

Ring-C by emitting one LO phonon:

w,(ku) = I r(u - c) p(kc/) dk', (10)
Ring-CH

where r(u - c) is the scattering rate from Ik u > to lEc, kc/> with emission of one LO phonon

and p(kc/) is the density of states. The total capture current density due to LO phonon emission

may then be expressed as:

00 dku 00oo d 2 ku
Jcen=2 (lph1) ]. ] f // Wijku) f u(1 - ifc) (11)

4~20 2r J 47r 2

where f' and fu are the Fermi-Dirac distributions for the confined and unconfined states,

respectively, and nph is the phonon occupation number. If we assume the Fermi level is near or

below the band edge of the barrier so that electrons are localized only in the states near Ikul = 0,

we may neglect the ku dependence in wl. We then integrate over ku in Eqn.11:

=0 +1 + exp[(E' - E + Eph)/kT]
S= no (flph + 1) h W1 J0 dk" Log, 1 + [(E- - EU)/kTj } (12)

where E' and Eu are the Fermi levels for the confined and unconfined states, respectively,

no = m*kT/,r 2hi , rn is the effective mas. (the difference of m* in different layers is neglected),

and np = 1/{ exp[Eph/kT] exp(-(E' - E')/kT] - 1}. The top of the barrier is taken to be

the zero energy reference and therefore, the longitudinal energy of unconfined state E u equals
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(hk,) 2/2m*. The effective barrier height Vb in Fig.5 is the energy difference between the top of

barrier and the first quantized state of the QW.

The reverse of the capture process is an escape process in which an electron on Ring-C

jumps to Iku > by absorbing a LO phonon. Because of the reversal symmetry of the scattering

rate, wl(ku) is also the total arrival rate to jku > from the confined states on Ring-C. Similarly.

we let w2(ku) be the total departure rate for the case of capture processes via phonon absorption.

Again, because of the reversal symmetry of the scattering rate, w2(ku) is also the total arrival

rate for escape processes via phonon emission. Using the same approach for Jer, we obtain the

expressions for J,1b, jbp, and J",

" =O no +p 1)nv (LA] z Log{1 + ep[( E - Efv/kT] Ijer o (cp+ 1 + ep[(Ey - E')k (14)

g1 + exp[(Ec - Eu + Eph)/kT]
J' =n ( +nhW dku Log f Z(3

J =n (np+1) vM w2 1 d. 1 + exp[(E - E)/kT] ()

' 1g~ + ep[(E' - Z -)/kT]

where n = 1/{ eZp[E1+/kTI exp[(Ec - E-)/kT - 1}.

The total capture current " = J1 + +gv), escape current (Jesc = J + ) and

net current (Jnet = Jcap - Je,,c) in a typical GaAs quantum well laser structure are calculated

from Eqn.12-15 and plotted against AEf = E. - Ec in Fig.6. Assuming Vb > Eph, the Ring-C

in Fig.5 for processes via phonon emission is very close to the Ring-C for processes via phonon

absorption. Therefore, we take w, :z w2 = w, = 0.2ps - 1 [Lester 1991, Blom 1990]. In a typical

quantum well laser, the net current density J,,tt, which determines AEf, is in the range of

10OA/cm 2 (near threshold operation) to 2000A/cm' (high power operation). We have assumed

only one quantized state exists in the QW. Existence of multiple quantized states will complicate

the model due to the intersubband transitions and is currently under investigation. We consider

the electron capture process only, assuming that the quantum capture of electrons is slower or

the capture process is ambipolar [Morin 1991, Eisenstein 1991]. However, the same formulism

can be applied in the study of hole capture.
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Using Eqn.12-15, we calculate the capture time constant (rcap) and the ratio of the capture

to escape time constant (R = Teapies) - the two determining parameters of the carrier capture

effect on the modulation response, for different effective barrier heights (Vb) and carrier densities

of confined states of quantum well (N) in the range of Jnet = 0 to 2000A/cm2 . The effective

barrier height (Vb) is determined by the bandgap offset of QW and the quantum well width.

The carrier density of confined states (N,) is actually the threshold carrier density which is

determined by the photon lifetime and number of QWs. The two time constants (rcav and Tesc)

are defined as 7ca, =- o9Jnet/aN,, and er.,c =Jnet/ON, respectively, in the small signal rate

equations of quantum well lasers Wu 1992] where N,, is the carrier density of unconfined states.

Note that reap is determined by both the capture and escape currents since Jnet = Jcap - Jesc.

We assume w, to be constant, independent of Vb, in this calculation. Recent calculations [Brum

1986] indicated that wo oscillates with well thickness. However, such dependence has not been

observed experimentally (Blom 1990). Nevertheness, our result for R is independent of wo since

this factor is cancelled out. From our calculations, we find that when J,,et is changed from 0 to

2000 A/cm2 , reap and R are almost constant (within a few percent) even though Jcap is much

larger than Jc when J,,t is large. This is illusirated in Fig.6 by plotting the ratio R versus

AEf. The average values of r7Tp and R over the range of J,,t = 0 to 2000A/cm 2 for lasers with

different Vb and N, are listed in Table II.

Simple analytic expressions for 7cap and R can be obtained based on the fact that when R

is comparable to or larger than unity, (AEf) 2 000 is very small compared to kT. We then expand

the expression for Jet to first order in AEf/kT:

=( f) . + exp((Ec - Eu' + Eph)/kT]

kT ]0 1 + xi[(E' - E- Eph)/kT]} (16)
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where Jo = n nph (nph + 1) w,. The rate constants 1/Toap and 1/7es, can now be expressed as:

1 _ 1 1

rcap- dNIdEj Jo -k' log

11 E - E
o [I, 9  ikT f (17)r'est dNc/dEc Uo - g

1 1
dN/dE Jo h Iog as AEf < kT

where 1109 is the integral in Eqn.16, If = fodku (f+ - f-), and

f 1/{exp[(±Eph - Ec + Eu)/kT] + 1). The ratio R Teap/esc then becomes:

R dN- (18)

This factor is a function of carrier densities and densities of states of the confined and unconfined

states, which depends on the QW structure. The dependence of R on the quantum well thickness

is shown in Fig.7 for a quantum well laser operating at different threshold carrier densities (Nc).

Note that the calculation for very wide quantum wells, which probably have a second quantized

state, is for reference only since our model is valid only for wells with one quantized state. This

is also the case for data in Table I for large Vb.

As discussed earlier, the gain compression coefficient of the laser increases with R and rea,,p

and the relaxation oscillation frequency is reduced by a factor 1 + R. The modulation response

of quantum well lasers is thus degraded appreciably when R ;Z 1. One notes from Table II

that r,p is relatively constant with respect to the effective barrier height Vb and the carrier

density of confined states N, (which is the threshold carrier density of the laser), while the ratio

R varies strongly with Vb and N. Furthermore, R is rather independent of the net injection

current, as evident from Fig.6. The implications are as follows: (1) a multi-quantum well laser

has a smaller R than a single quantum well laser due to the lower threshold carrier density of

the former; (2) lasers with narrow or shallow QWs exhibit higher values of R due to a smaller

effective barrier height Vb; (3) these effects are relatively independent of the bias current (and

hence optical power). To completely understand the structural dependence of the modulation

response, the effect of carrier diffusion in the separate confinement region of the device has to
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be included. The calculations above consider the quantum capture effect only but can reveal

dependences on device structure which are consistent with observed experimental results to date

[Nagarajan 1991, Shimizu 1991, Uomi 1991], thus suggesting that quantum capture can play a

significant role relative to the carrier diffusion effect.
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4. Intrinsic Equivalent Circuit of Quantum Well Lasers

Intrinsic equivalent circuit of semiconductor lasers is useful not only for designing electronic

circuitry with which the laser operates, but also for furthering the understanding of laser dy-

namics and noise properties [Katz 1981, Harder 1982c, Harder 1990]. The intrinsic equivalent

circuit of a bulk semiconductor laser has been developed a decade ago [Katz 1981, Harder 1982c].

Similar approaches was applied to quantum well lasers [Harder 1990]. However, with the recent

understanding of the importance of transport in quantum well lasers as described in the last two

sections, it becomes necessary to revise the well-accepted equivalent circuit models to include

these effects [Kan 1992b]. It is assumed here that the SCH region in the laser structure is suf-

ficiently narrow so that carrier diffusion is not a significant factor [Nagarajan 1991]. Using this

circuit model, certain qualitative features of the modulation dynamics and their dependence on

the capture time constants can be visualized [Kan 1992b].

Let n3 be the small signal carrier density in the SCH region and n2 be the density of carriers

in the confined states of QW. The small-signal rate equation describing the transfer of carriers

into and out from QW is [Hideout 1991):

dn3  =iinj 3 inet (19)

dt qAw r3  qAw

where q is the electronic charge, A is the junction area, w is the quantum well width, and r3

is the spontaneous lifetime. It is assumed that carriers in the SCH region are fed directly by

an external injection current iinj. The net current flowing into the QW (denoted by inet) is

the difference between the quantum capture and escape currents, n3(qAw)/Tcap - n2(qAw)/r,c,

where T-cap, 7.es are the capture and escape time constants, respectively [Rideout 19911.

The external voltage across the device (neglecting parasitics) is given by the difference of

the quasi-Fermi levels in the SCH region (V3 = Ec - Ey), which is related to the density of

unconfined carriers. The small-signal relationship can be written as: n3 (qAw,) = C3v 3 where w,

is the width of the SCH region, v3 is the small-signal of V3 , and c3 is the small-signal inversion

capacitance associated with the unconfined carriers [Katz 1981, Harder 1982c]. Similarly, the
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change of voltage across the quantum well is given by the difference of the quasi-Fermi levels in

the quantum well, i.e., V2 = E'(QW) - Ey(QW), which is related to the density of confined

carriers: n2 (qAw) = c2v 2 where v2 is the small-signal of V2 and c2 is the inversion capacitance

associated with the confined carriers in QW [Harder 19901. The expressions for c2 and c3 are

given in [Harder 1982c, 1990]. Using these relations between carrier densities and voltages, we

can rewrite Eqn.1 as:

dv 3  V3 V3  V2
i ,fj = +3  + -- +( - - ) (20)

r 3  resc

where r 3 = 73 /C 3 , rcap = rcap/c3, and reac = Tesc/c2. Note that v3 is the actual ac voltage on

the device. The net current (inet = v3/rcap - V2/r.s) flowing into the QW can be expressed as

the current flowing between two nodes in a circuit by making the following transformation:

V3 - V2(r')

•, 7"$ =(21)reap

The node voltage v2(rcap/rec) is denoted as 92 and the ratio rcap/reac as B.

The equivalent circuit can now be constructed by using the small-signal rate equations for

the confined carriers in QW and the photons, and taking i,,et as the effective injection current:

dn2 _ inet n2 vg'Son 2 - Vgo(1 - So)s (22)
dt qAw r2

ds n2  sd = rvg'Son2 + rvgo(1 - CSo )S + r3 2 - - (23)
dt r2  rp

where 72 is the spontaneous lifetime, vg is the group velocity of light, go is the optical gain at

the bias point, g' is the differential gain, c is the gain compression coefficient, S, is the photon

density at the bias point, r is the optical confinement factor, and / is spontaneous emission

coupling factor. An equivalent circuit of the quantum well alone (without regard for the SCH

region) can then be constructed using the standard procedure, resulting in an RLC resonance

circuit (Fig.8a) whose impedance is given by:

1 inet 1 1Zqw f - j2,'fc + + (4
ZQWf V2 r j27rfL + r(,
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By combining Eqn.24 with Eqn.20 and 21, the overall equivalent circuit of the device is shown

in Fig.8b. The total impedance Z,,t(f) is given by:

1 1 1Zint(f) = j2rfc 3 + r + (25)Zi~t~f) r rca + BZ w(f)

Note that the a.c. optical output is proportional to the current flowing through the inductor,

iL = vggo(1 - eSo)s(qAw).

We now consider several qualitative features of the equivalent circuit. First, when the

capture time is infinitely long (rcap -+ cc), the equivalent circuit becomes a simple RC circuit

(Fig.9a) with a time constant r3c3 = r3 = the spontaneous lifetime, which is on the order of a few

nanoseconds. This represents the situation in which the QW is effectively non-existent and the

inversion capacitance c3 is responsible for limiting the modulation response of an LED (emitting

tight in the SCH region) to well below 1 GHz. In another extreme where the carrier capture is

infinitely fast (rcap --+ 0, r,., --* 0) but B remains to be nonzero, the equivalent circuit reduces

to a RLC circuit as shown in Fig.9b. In this case, the inversion capacitance (c3 ) DOES NOT

produce a low frequency roll-off as in the previous case, but is added to the inversion capacitance

for confined carriers (c2 ) and thus lowers the relaxation oscillation frequency (, 1/ .(BL)Cfif)

where Ce1 1 = c3 + Bc 2. It is cleax from Fig.9b that even in the event of infinitely fast carrier

capture, the relaxation oscillation frequency of a quantum well laser is affected by the inversion

capacitance for unconfined carriers (c3 ) and the capture/escape ratio B = rcap/resc.

For the intermediate case where the capture time is finite, a simple circuit analysis shows

that, at high bias power (in which case L -- 0 ), the inductor current iL (which is proportional

to the optical response) can be expressed as:

iL = inj (26)
SrcptjWc3 + -;lW2 LC2 + jw- + 1)

where "//" denotes a parallel combination of the circuit elements. There are thus two spectral

features in the modulation response: (1) a RC roll off at angular frequency

1 = 1 1
c3(r3//rcap) 7"3 "t'c2p
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and (2) a resonance at w, = 1/VL-2. This is shown schematically in Fig.9c. Note from Eqn.27

that the RC roll off is NOT simply due to the spontaneous lifetime r3 but is a parallel combination

of the spontaneous lifetime and capture time. Since the general estimates of capture time are

on the order of 1-40 ps [Morin 1991, Eisenstein 19911, the RC roll off is dominated by r 1p at

frequency 1/(27r7cap) which may or may not be higher than the relaxation oscillation frequency.

A similar RC roll-off effect can also result from carrier diffusion across a wide SCH region

[Nagarajan 1992].

The computed total impedance and the modulation response are plotted in Fig.10a-c for

various choices of parameters as shown in the figure caption. Comparing the impedance plot in

Fig.10a&b, we notice a drastic reduction of the relaxation oscillation peak when B is reduced

from 0.6 to 0.006 by increasing r,,,. This is due to the reduction of the effect of v,- by a factor

of B (F2 = Bv2) in the complete equivalent circuit. The physical meaning is that: when Tesc is

long, the effect of relaxation oscillation inside the QW cannot be fed back to the SCH region.

This result suggests that the ratio B can be estimated from the impedance measurement with

parasitic contributions being eliminated. A long re.. also leads to less damping in QW lasers

[Rideout 1991] as can be seen in modulation response plotted in Fig.10a&b. Fig.10c illustrate

the case of long capture time which shows a RC roll-off and resonance peak as mentioned above.
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Table II

Calculated values of rcp and R for different structural parameters. The value of AEf when

Jet- 2000A/cm 2 is denoted by (AE!) 2 oo.

NC  R TC (A Ef) 2WO

(I1__cm_) (ps) (meV)

Vb = 0.2 eV

2 0.003 3.0 85

3 0.013 3.1 45

4 0.054 3.3 18

5 0.19 3.6 7

6 0.48 4.0 4

Vb = 0.1 eV

2 0.15 3.6 10

3 0.43 4.0 5

4 0.79 4.2 3

5 1.12 4.3 2

6 1.39 4.3 1



Figure Captions

Fig. 1.

Schematic illustration of the "reservoir" model.

Fig. 2.

Plot of (dg/dn)e1 f vs. threshold gain using data in Table I. Solid circles indicate lasing in the

first quantized state; crosses indicate lasing in the second quantized state. Inset: the separate

confinement heterostructure of the InGaAs tensile-strained single QW laser where A. and d for

the regions A, B and C are respectively, 1.0 pm and 145nm, 1.1 pm and 145nm, 1.2 pr and

10nm, and region D is the 1no.41Gao.59As quantum well.

Fig. 3.

Plot of K'(= K - 4ir2rp) vs. threshold gain using data in Table I.

Fig. 4

Plot of c vs. (dg/dn)etf using data in Table I. The straight line is a least square linear regression

fit of the data.

Fig. 5

Carrier capture process in QW structures. The parabolic sub-band associated with each longi-

tudinal energy (Ec or Ez) is due to the transverse energy of the electron (hk,'-))2/2m.

Fig. 6

Various current components in a QW structure with Vb = 0.15eV and N. = 4 x 10-1 2 cm - 2 at

T=300K and the ratio 1R are plotted against AEf.

Fig. 7

The ratio R vs. well thickness of Al 0 .3 Gao.7As/GaAs QW for N, = 2, 3, and 4 x 1012 cm- 2 .

Fig. 8
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(a) Equivalent circuit of photon-carrier interaction in QW; (b) Complete intrinsic equivalent

circuit of quantum well laser.

Fig. 9

Equivalent circuit and schematic modulation response in the cases: (a) long capture time; (b)

short capture time with finite B; and (c) intermediate case and high output power. (n3 is the

carrier density in SCH region and iL is the inductor current which is proportional to the laser

output.)

Fig. 10

Intrinsic impedance (left) and modulation response (right) in cases: (a) rcp = 5ps, re ,:- 5ps,

and B=0.6; (b) 7cap = 5ps, -res = 500ps, and B=0.006; (c) MCRP = 501S, resc = 50ps, and

B=0.5. The parameters used for calculation are: 7 2 = 3 = Ins, rp = 2ps, A = 200pum x 3pm,

p = 10 - 1, f = 10-1 7cm 3 , g, = 6 x 10-1 6cm 2 , and r = 0.03. In each case, three curves are

plotted, corresponding to three different current levels, 1=1.2 Ith, 4 Ith, and 20 Ith where Ith is

the threshold current.
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